Influence of different wind profiles due to varying atmospheric stability on the fatigue life of wind turbines
نویسندگان
چکیده
Offshore wind energy is being developed on a very large scale in the European seas. The objective of developing wind energy offshore is to capture greater wind speeds than are encountered onshore and as a result more energy. With this also come more challenges in the design of wind turbines due to the hostile offshore environment. Currently the standards for offshore wind turbines prescribe a site specific design for the support structures and the design for the rotor nacelle assembly according to onshore standards. Wind turbines are designed to withstand fatigue and ultimate loads. For the fatigue loading several input conditions have been prescribed, amongst which wind profile is one of them. Wind profile is represented by power law or logarithmic law as given in the standards. A neutral stability of the atmosphere is considered while obtaining the wind profile using the logarithmic law. In this paper the atmospheric stability is varied in order to estimate different wind profiles and simulations are run in Bladed to check its influence on the fatigue damage at the blade root. The variations in the atmospheric stability has been taken into account by using some typical values of Obukhov length. From steady state simulations it has been found that atmospheric stability is important for fatigue damage. The analysis showed that variation in the distribution of atmospheric stability causes large variations in the fatigue damage for different sites. Thus, it is worthwhile to carry out a full scale study using the turbulent winds and real data for wind turbine and environmental conditions.
منابع مشابه
Unsteady aerodynamic analysis of different multi mw horizontal axis offshore wind turbine blade profiles on sst-k-ω model
To indicate the best airfoil profile for different sections of a blade, five airfoils; included S8xx, FFA and AH series was studied. Among the most popular wind power blades for this application were selected, in order to find the optimum performance. Nowadays, modern wind turbines are using blades with multi airfoils at different sections. SST-K-ω model with different wind speed at large scale...
متن کاملDifferent Types of Pitch Angle Control Strategies Used in Wind Turbine System Applications
The most common controller in wind turbine is the blade pitch angle control in order to get the desired power. Controlling the pitch angle in wind turbines has a direct impact on the dynamic performance of the machine and fluctuations in the power systems. Due to constant changes in wind speed, the wind turbines are of nonlinear and multivariate system. The design of a controller that can ad...
متن کاملEvaluation of Turbulence on the Dynamics of Monopile Offshore Wind Turbine under the Wave and Wind Excitations
In recent years, the use of offshore wind turbines has been considered on the agenda of the countries which have a significant maritime boundary due to more speed and stability of wind at sea. The aim of this study is to investigate the effect of wind turbulence on the aero-hydrodynamic behavior of offshore wind turbines with a monopile platform. Since in the sea, the wind turbine structures ar...
متن کاملInfluence of Fault Current Limiter in Voltage Drop and TRV Considering Wind Farm
Influence of distributed generation systems in the distribution systems can increase the level of short-circuit current. The effectiveness of distributed generation systems is affected by the size, location, type of distributed generation systems technology, and the methods of connecting to distribution systems. Wind turbine system is the examples of distributed generation source. Not only does...
متن کاملAssessing atmospheric stability and its impacts on rotordisk wind characteristics at an onshore windfarm
As the average hub height and blade diameter of new wind turbine installations continue to increase, turbines typically encounter higher wind speeds, which enable them to extract large amounts of energy, but they also face challenges due to the complex nature of wind flow and turbulence in the planetary boundary layer (PBL). Wind speed and turbulence can vary greatly across a turbine’s rotor di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007